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Abstract— The Golem Group/UCLA team was a finalist in the
2005 DARPA Grand Challenge, and traveled 22 miles on race
day. The Golem Group was also one of the most successful teams
in the 2004 Grand Challenge, traveling 5.2 miles on a shoestring
budget. We present the strategies, challenges, outcomes, and
lessons learned from two years of autonomous vehicle develop-
ment. Autonomous navigation in the off road environment is a
challenging problem, which requires the successful integration of
many different sensors and systems. We discuss the integration
of GPS, IMU, and odometry together with various models for
vehicle dynamics. In particular, we find it useful to incorporate
the non-holonomic property of the ground vehicle, but also
point out situations in which this constraint is violated and how
to compensate. We also explore our approach to selection of
quantities to use for control, taking into account which pieces
of the system are most sensitive to errors in position and pose
estimates. Finally, we address the performance of our system,
and future possibilities for improvement.

I. INTRODUCTION

In 2004, the U.S. Defense Advanced Research Projects
Agency (DARPA) held its first Grand Challenge. A million-
dollar prize was offered for the individual or team that could
build an autonomous ground vehicle capable of traversing a
150 mile off-road course in the desert in under 10 hours. The
event was described as “a field test to accelerate research and
development in autonomous ground vehicles.” No vehicle was
able to travel more than seven miles during the first race, and
a second event was held (for twice the prize money) in 2005.
We qualified for and competed in both races, completing five
miles of the 2004 event, and 22 miles of the 2005 race course.

A. Prior Work

From a scientific standpoint, the general localization prob-
lem in the DARPA Grand Challenge (DGC) could arguably be
considered “solved”. GPS navigation is common, and filtering
frameworks which combine multiple sensors for state estima-
tion are well-understood[1], [2], [3], [4]. Unmanned ground
vehicles such as those built by Dickmanns[5] have been
capable of high-speed autonomous driving in the structured
highway environment for years. However, it is clear that there
is an unusually large divide between theory and practice in
off-road autonomous vehicle navigation. Prior to the DGC, the
U.S. Army’s eXperimental Unmanned Vehicle[6] represented
the state of the art for autonomous operation in unstructured

off-road environments. It could navigate an obstacle-filled
environment at just over 6 kph.

B. Vehicle

Our vehicle was a standard heavy duty pickup truck. We in-
stalled actuators to control the accelerator, brakes, and steering.
Sensors used to determine the vehicle state included: a high-
quality NovAtel GPS receiver with decimeter-level DGPS
corrections from the Omnistar satellite, a BEI C-MIGITS III
integrated INS/GPS system, a quadrature encoder which uti-
lizes Hall sensors on the rear differential to measure velocity,
a high-precision optical encoder to measure steering angle,
and feedback (including velocity) from the vehicle’s On-Board
Diagnostics system. We forego a complete description of the
system architecture here and emphasize state estimation; for a
more general discussion, see [7].

II. SENSOR FUSION

In theory, it is relatively simple to estimate a vehicle’s state
(position, orientation, and velocity) given measurements from
the variety of sensors available to us. The standard approach,
and one which we adopted, is to use a Kalman filter. It would
make sense to combine all sensor data in a single filter, and one
would expect excellent performance from such a filter (better
than that of any individual sensor). However, the assumptions
of such an approach are that the system follows a particular
model, and that the noise in the system is reasonably well-
behaved. Unfortunately, this is far from true in the real world.
Our best models fail to adequately describe the complexities
of the vehicle’s interactions with its environment. Sensors
exhibit reasonable noise characteristics most of the time, but
occasionally depart substantially from reason. Multipath error
in GPS is the worst offender, sometimes creating consistent,
non-zero mean biases which are difficult to differentiate from
valid data. Additionally, the system must operate flawlessly
for many hours in a harsh environment where sensors may
fail completely.

Given these realities, a simple monolithic filter actually
increases the system’s sensitivity to noise and component
failure. While it may show optimal performance most of the
time, a single departure from normal operations can lead to
complete failure. We address this problem by simultaneously



employing a multitude of state estimation techniques. We
developed two different Kalman filters which are indepen-
dently capable of estimating the vehicle’s entire state. Each
filter relies on a different model and different sensors. Also,
individual sensors and subgroups of sensors are incorporated
into simple estimators for individual components of the state.
For example, velocity can be obtained from the IMU, from
the GPS, from the quadrature encoder, or from the vehicle’s
network. All estimators run in parallel, and each estimate is
associated with a measure of health and a priority. Depending
on the health estimates and priorities, the final state reported to
the rest of the system can be provided entirely by a single filter,
or each component (position, velocity, etc.) can come from
a different source. In fact, in typical operations, we achieved
the best results by combining the output of three different state
estimation techniques in the final state. This system is robust to
failures and strong outliers from individual sensors as long as
at least one of the estimators for each critical quantity remains
viable.

In the following sections, we describe our two main Kalman
filters. They represent substantially different approaches. Both
filters rely on GPS in the long term, but attempt to maintain
good estimates through periods of long GPS outage, poor
signal, and multipath (conditions which were all present the
the DGC). The first state estimator uses a model analogous
to a bicycle for the vehicle and relies heavily on the state
history. The second estimator is based on a six-degree-of-
freedom rigid-body model, with the addition of a “soft” non-
holonomic constraint on the vehicle’s velocity enforced as a
virtual heading measurement.

III. THE BICYCLE ESTIMATOR

The bicycle estimator is a discrete time extended Kalman
filter, with the following inputs:

1) GPS-provided latitude and longitude at 20 Hz.
2) Rear axle velocity at 30 Hz.
3) Steering wheel angle at 20 Hz.
The state propagation equations for the bicycle estimator

are:

x̃k+1 = x̂k + v̂k∆t
cos(φ̂k + σ̂k)

cos σ̂k

ỹk+1 = ŷk + v̂k∆t
sin(φ̂k + σ̂k)

cos σ̂k

φ̃k+1 = φ̂k +
v̂k∆t

d
tan σ̂k (1)

where, as illustrated in Fig. 1, (x, y) are the local cartesian
coordinates of the center of the front axle of the car. The GPS
sensor is located at this point. The angle φ is the heading
of the car with respect to the local x axis. The angle σ is
the steering angle of the car as shown in the figure. v is the
rear axle velocity. The quantity d is the distance between the
front and rear axles of the vehicle. A caret over a variable
implies that the variable is an estimate, and a tilde over a
variable implies that the variable is predicted or propagated
forward. The time elapsed since the last state update is ∆t.

Fig. 1. The “bicycle” model.

The subscripts in the above equations refer to successive time
indices in state propagation.

The bicycle model works well when the steering angle
is small. For large steering angles however, the model is
inaccurate and exhibits considerable lag between the state
estimate and the GPS measurement. Also, the model is clearly
violated at high velocities, when the vehicle slips as it turns.
Thus, the steering angle, σ, is calculated as:

σ̂k = γ̂k(σmeasured − σ̂bias k) (2)

where γ is a steering calibration factor which compensates for
model inaccuracies. The steering bias estimate σbias is used to
compensate for bias in the measured steering angle. The rear
axle velocity, v, is scaled:

v̂k = Ŝk(vmeasured) (3)

where vmeasured is the velocity input to the bicycle estimator.
The slip factor S compensates for slip (while accelerating
or driving on a slope) as well as variations in the vehicle’s
apparent wheel radius. This approach generally was effective
for tracking slip. However, in one instance when the vehicle
was stuck with the wheels spinning, we found that the slip
factor was not able to track long periods of constant slipping.
We were not greatly concerned by this edge case.

The state variables are latitude and longitude (translated
to local Cartesian coordinates x,y), heading φ, slip factor S,
and either steering bias σbias or steering calibration factor γ.
The steering calibration factor and the steering bias cannot
be estimated simultaneously, as the state variables become
unobservable. Therefore, the bicycle estimator operates in the
following two modes:

1) When the vehicle is going straight (|σmeasured| < 3◦),
σbias is estimated.



2) When the vehicle turns (|σmeasured| > 3◦), γ is
estimated. This allows us to compensate for model
inaccuracies in hard turns.

A. Modeling System Noise

The state is propagated and updated with every measure-
ment. We associate no noise with the state propagation equa-
tions (1), and additive white Gaussian noise with the inputs
(vmeasured and σmeasured). To efficiently track the constants in
the state variables (S, σbias, γ), we assume an additive white
Gaussian noise term in their propagation. We also associate
noise with the GPS measurements (latitude and longitude).
The variances assigned to the noise processes described above
were tuned to ensure uncorrelated innovations, stability, and
reasonably quick convergence. Adjusting the variances alters
the “trust” associated with the history of the vehicle state in
relation to the new measurements. This is a delicate balance in
particular for GPS, as different noise modes must be handled
explicitly.

B. Determining the Appropriate GPS Measurement Noise
Variance

The data received from the GPS consists of latitude, lon-
gitude and horizontal dilution of precision (HDOP). HDOP
is a figure of merit which is directly related to the number
of satellites visible to the GPS antenna, and indirectly to the
noise in each measurement. However, our attempts at mapping
the HDOP values to actual variances were futile, as we did not
observe a monotonic relationship. We noticed that an HDOP
of more than 5 usually corresponded to multipath reception,
which is associated with large, non-zero mean noise. In the
absence of any ad-hoc relationship between HDOP and noise
variance, we opted to use this HDOP threshold to switch
between a small and large variance for the GPS noise. By
introducing this nonlinearity into the GPS noise model, we
achieved very satisfactory results.

C. Projection of the Innovations

The bicycle estimator is based on a very intuitive model
of the vehicle, which motivates us to consider the GPS
innovations in a physically relevant reference frame rather than
any arbitrary reference frame. It is beneficial to project the
innovations into the local frame of the vehicle: parallel to the
direction of motion and perpendicular to it.

For an ideal estimator, the innovations will be uncorrelated
with each other. However, we tuned the estimator to just
achieve innovations with zero mean. While tuning the estima-
tor it was very useful to consider this physical interpretation
of the innovations. For example, a DC bias in the parallel
innovation implied that we were not tracking the slip factor (S)
adequately. Thus, to ensure a zero mean parallel innovation,
the variance associated with the propagation of slip factor was
increased.

D. Adaptive Shaping of the Innovations

The noise in the GPS data is highly correlated and we
have very little a priori knowledge of the variance. Very
often, especially when the vehicle drives near a wall, or
approaches a tunnel, we observe highly erratic jumps in the
GPS measurements due to multipath reflections. Without any
a priori knowledge of the variance in such cases, the state
estimate jumps around, with corresponding erratic behavior in
control, obstacle detection, and path planning.

To counter these “unphysical” jumps, once the estimator
is converged, we clip the innovations to a certain maximum
absolute value. For example, a GPS measurement correspond-
ing to a perpendicular innovation of 2 meters in 0.05 sec
while driving straight is unphysical. In this case, perpendicular
innovations should be clipped to a nominal value (in our case,
six inches). When we added this behavior, we found that it
did prevent large jumps in the state estimate, but at a great
cost. We observed that if the innovations were clipped to a
fixed range, then in certain situations the estimate lagged far
behind a “good” set of GPS measurements and took a long
time to reconverge. To prevent this, we clip the innovations
adaptively. The limit is determined as the minimum of either
a fixed limit or the mean of the innovations in the last two
seconds, scaled by a factor slightly greater than unity. The
parallel and perpendicular components of the innovation are
clipped separately with different numerical constants.

E. Countering Time Delays

All the software for our vehicle runs on a single laptop
computer. While this has some great benefits in terms of ease
of development and simplicity, it also leads to some com-
plications. In particular, we experience non-constant delays
between the time sensor data appears on the bus and the time
it is processed by the control program, due to other tasks like
obstacle detection or path planning running. Usually this delay
is nominal (∼50-200 µs), but it is sporadically very large.
A large delay in GPS data processing manifests itself as a
large negative parallel innovation. However, these innovations
are clipped effectively by the method just described, and do
not significantly affect the state estimate. In the future, we
plan to explore various options to enforce harder real-time
performance.

F. Special Modes of Operation

Two other model violations require special handling:
• The GPS signal drifts considerably when the vehicle is at

rest. This is unphysical, and was particularly bad for our
path planning algorithm. Therefore, when the vehicle is
going extremely slowly or is at rest, the variance assigned
to the GPS measurements is increased significantly. In
such a case, the bicycle estimator essentially works like
an integrator rather than a filter.

• We observed that the GPS signal occasionally jumps
discretely. These jumps usually correspond to the pres-
ence of a power transmission line nearby. This was
troublesome because the GPS takes a while (>2 s) to



reconverge after the jumps. These unphysical jumps are
easily detected from corresponding jumps in the parallel
and perpendicular innovations. After the detection of such
jumps, the GPS variance is increased until it can be
considered trustworthy again, i.e., until the innovations
are within a certain limit.

G. Relationship with the IMU

One advantage of this model is that it converges very
quickly while driving straight, usually in approximately 5 s.
Once the bicycle model converges, the heading estimate can
be used to initialize the Inertial Measurement Unit (IMU).
While driving straight, the heading estimate from the bicycle
estimator is extremely good, typically within 0.5◦ of the short-
term IMU heading. However, on sharp turns, the heading
estimate is up to ∼3◦ from the IMU computed heading. Thus,
IMU heading is given a higher priority in the state arbitration
system, especially when GPS signals are bad. In the future, we
may extend the bicycle model to include the angular rotation
and linear displacement data from the IMU.

IV. THE SIX-DEGREE-OF-FREEDOM ESTIMATOR

We now describe the of the six-degree-of-freedom estimator
(6DOF). Like the bicycle estimator, 6DOF is implemented
as a discrete-time Extended Kalman Filter. The estimator
is designed using fairly standard techniques for strap-down
inertial navigation systems. Rather than a detailed model of
the vehicle’s dynamics, the filter relies mainly on the rigid-
body kinematic equations. However, due to the absence of
a magnetometer or other means to measure the vehicle’s
orientation, and the need to be able to ensure convergence
of the non-linear filter without requiring an initial calibration
procedure, we exploit knowledge of the vehicle’s dynamics
in the form of virtual heading measurements from inertial
velocity data.

The vehicle is modeled as a rigid body moving in three-
dimensional space; the state of the vehicle can hence be
described by a position vector p ∈ R3, representing the
location with respect to an Earth-fixed reference frame of
the on-board IMU, a velocity vector v = dp/dt, and a
rotation matrix R ∈ SO(3), where SO(3) is known as the
Special Orthogonal group in the three-dimensional space, and
includes all orthogonal 3 by 3 matrices with determinant equal
to +1. The columns of R can be thought of as expressing
the coordinates of an orthogonal triad rigidly attached to the
vehicle’s body (body axes).

The inputs to the estimator are the acceleration and angular
rate measurements from the IMU, provided at 100 Hz, and the
GPS data, provided at 20 Hz. In addition, the estimator has
access to the velocity measured at the rear differential, and to
the steering angle measurement.

In the following, we will indicate the acceleration measure-
ments with za ∈ R3, and the angular rate measurements with
zg ∈ R3. Moreover, we will indicate with Za the unique skew-
symmetric matrix such that Zav = za × v, for all v ∈ R3.

A similar convention will be used for zg and other three-
dimensional vectors throughout this section.

The IMU accelerometers measure the vehicle’s inertial
acceleration, in body-fixed coordinates, minus the gravity
acceleration; in other words,

za = RT (a− g) + na,

where a and g are, respectively, the vehicle’s acceleration
and gravity acceleration in the inertial frame, and na is an
additive, white Gaussian measurement noise. Since the C-
MIGITS IMU estimates accelerometer biases, and outputs
corrected measurements, we consider na as a zero-mean noise.

The IMU’s solid-state rate sensors measure the vehicle’s
angular velocity, in body axes. In other words,

zg = ω + ng,

where ω is the vehicle’s angular velocity (in body axes), and
ng is an additive, white Gaussian measurement noise. As in
the case of acceleration measurements, ng is assumed to be
unbiased.

The kinematics of the vehicle are described by the equations

ṗ = v,
v̇ = a,

Ṙ = RΩ,
(4)

in which Ω is the skew-symmetric matrix corresponding to
the angular velocity ω, and we ignore the Coriolis terms
for simplicity. This is justified in our application due to the
relatively low speed and short range, and the fact that errors
induced by vibrations and irregularities in the terrain are
dominant with respect to the errors induced by ignoring the
Coriolis acceleration terms.

We propagate the estimate of the state of the vehicle
using the following continuous-time model, in which the hat
indicates estimates:

˙̂p = v̂,

˙̂v = R̂za + g,

˙̂
R = R̂Zg.

(5)

An exact time discretization of the above, under the assump-
tion that the (inertial) acceleration and angular velocity are
constant during the sampling time is:

p+ = p + v∆t + 1
2

(
R̂za + g

)
∆t2,

v+ = v +
(
R̂za + g

)
∆t,

R+ = R exp(Zg∆t).

(6)

The matrix exponential appearing in the attitude propagation
equation can be computed using Rodrigues’ formula. Given a
skew-symmetric 3 by 3 matrix M , write it as the product M =
Ωθ, such that Ω is the skew-symmetric matrix corresponding
to a unit vector ω; then

exp(M) = exp(Ωθ) = I + Ω sin θ + Ω2(1− cos θ). (7)



The error in the state estimate is modeled as a 9-dimensional
vector δx = (δp, δv, δφ), where

p = p̂ + δp,
v = v̂ + δv,

R = R̂ exp(δΦ).
(8)

Note that the components of the vector δφ can be understood
as the elementary rotation angles about the body-fixed axes
that make R̂ coincide with R; such a rotation, representing the
attitude error, can also be written as δR = exp(δΦ) = R̂T R.

The linearized error dynamics are written as follows:

d

dt
δx = Aδx + Fn, (9)

where

A :=

 0 I 0
0 0 −RZa

0 0 −Zg

 , F :=

 0 0
R 0
0 I

 . (10)

When no GPS information is available, the estimation error
covariance matrix P := E[δx(δx)T ] is propagated through
numerical integration of the ODE

d

dt
P = AP + PAT + FQFT .

Position data from the GPS is used to update the error
covariance matrix and the state estimate. The measurement
equation is simply zgps = p+ngps. In order to avoid numerical
instability, we use the UD-factorization method described in
[8] to update the error covariance matrix and to compute the
filter gain K.

Since the vehicle’s heading is not observable solely from
GPS data, and we would like to keep calibration and initial-
ization procedures to a minimum (e.g., to allow for seamless
resets of the filter during the race), we impose a soft constraint
on the heading through a virtual measurement of the inertial
velocity, with the form:

znhc = arctan
(

vEast

vNorth

)
− λσ,

where σ is the measured steering angle and λ is a factor
accounting for the fact that the origin of the body reference
frame is not on the steering axle.

In other words, we effectively impose a non-holonomic
constraint on the motion of the vehicle through a limited-
sideslip assumption. This assumption is usually satisfied when
the vehicle is traveling straight, but may not be satisfied
during turns; moreover, when the vehicle is moving very
slowly, the direction of the velocity is difficult to estimate,
as the magnitude of the velocity vector is dominated by the
estimation error. Hence, the virtual measurement is applied
only when the steering angle is less than 10 degrees, and the
vehicle’s speed is at least 2.5 mph (both these values were
determined empirically).

Fig. 2. Performance of state estimator while going under a bridge.

V. RESULTS

Performance of the bicyle estimator while driving under a
bridge is shown in Fig. 2. The track of the vehicle is from
left to right in this figure. Note that the GPS data has a huge
variance due to weak signal and multipath. Also note that the
GPS noise is highly correlated; in this case the variance is
much larger in the direction perpendicular to the motion as
compared to the parallel direction. As seen from the figure,
the state estimator is immune to the large “unphysical” jumps
in GPS data. Ocassional jumps of length ∼ 0.3m are observed
in the successive updates of estimated state. These correspond
to a delay in received GPS data and large negative parallel
innovations as discussed in Section III-E.

During the 2005 Grand Challenge, we successfully traversed
22 miles of challenging terrain in just under one hour. Our
race ended due to a memory allocation failure unrelated to
the state estimation system, and in general we were very
pleased with our localization performance during the race. In
analyzing the data collected during the race, we confirmed
that the state estimation system was immune to multipath
and interference. While our vehicle had “hiccups” due to
failures in obstacle detection and path planning, our estimated
state was reliable and consistent throughout the race. Typical
performance for both estimators was position accuracy within
10cm and heading accuracy within 0.1◦.

VI. CONCLUSIONS

It is interesting to compare the two state estimators. Dur-
ing practice, qualification, and the race, each estimator was
observed to outperform the other in different situations. With
good GPS reception, we generally found the performance of
6DOF to be superior due to the high precision of the inte-
grated IMU information. However, in real-world conditions,
the bicycle model was far more robust due to its stronger
reliance on a physical model of the vehicle. Thus, the bicyle
model was given a higher priority in the state arbitration
system. Both estimators did exhibit catastrophic failure modes



where estimates were unreliable for extended periods of time,
sometimes requiring a full reset of the filter. We conclude
that employing both and implementing our dynamic arbitration
system were critical to our success.
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